Problem 1

Evaluate the integral:

$$I = \int_0^1 x \ln(1 + x) dx$$

Solution:

Let
$$u = \ln(1 + x)$$
, $dv = x dx \Rightarrow du = dx/(1 + x)$, $v = x^2/2$.

$$\int x \ln(1+x) dx = (x^2/2) \ln(1+x) - \int (x^2/2)/(1+x) dx$$

Simplify using polynomial division and compute the definite integral:

$$I = [(x^2/2) \ln(1+x)]_0^1 - 1/2 [x^2/2 - x + \ln(1+x)]_0^1 = 1/4$$

Answer: I = 1/4.

Problem 2

Solve the initial value problem:

$$dy/dx = y - x, y(0) = 1$$

Solution:

Rewrite as dy/dx - y = -x and find the integrating factor $\mu(x)$ = e^{-x}.

$$d/dx(e^{-x}y) = -x e^{-x}$$

Integrate both sides and apply the initial condition:

$$y = x - 1 + 2e^x$$

Answer: $y = x - 1 + 2 e^x$.

Problem 3

Let f(x, y, z) = xyz. Compute the gradient ∇f at (1, 2, 3) and the directional derivative along v = (1, -1, 1).

Solution:

Partial derivatives: $f_x = yz$, $f_y = xz$, $f_z = xy$.

$$\nabla f(1,2,3) = (6,3,2)$$

Unit vector along v:

$$u = (1, -1, 1)/\sqrt{3}$$

Directional derivative = $\nabla f \cdot u = (6 - 3 + 2)/\sqrt{3} = 5/\sqrt{3}$

Answer: $\nabla f(1, 2, 3) = (6, 3, 2)$; directional derivative = $5/\sqrt{3}$.